When Singleton should be used?
Singleton should be used incase creation of Object is costly or heavy I.E. DBConnection. It should not be used if the Object is mutable.

  1. Eager initialization
  2. Lazy initialization
  3. Static block initialization
  4. Using Synchronized method
  5. Using Synchronized block
  6. Double Checked Locking
  7. Enum Singleton
  8. Initialization on demand holder idiom

3 Things are common across all singleton implementation

private constructor
public static getInstance Method
private static instance field

Eager initialization
An instance of Singleton Class is created at the time of class loading

EagerInitialized.java

package com.mugil.singleton;

public class EagerInitialized {
	
	private static final EagerInitialized instance = new EagerInitialized();
	
	//Private Constructor
	private EagerInitialized()
	{
	}
	
	public static EagerInitialized getInstance()
	{
         return instance;
        }	
}

Lazy Initialization
With lazy initialization you crate instance only when its needed and not when the class is loaded

LazyInitialized.java

package com.mugil.singleton;

public class LazyInitialized 
{
	public static  LazyInitialized instance = null; 
	
	private LazyInitialized()
	{
		
	}
	
	public static LazyInitialized getInstance(){
        if(instance == null){
            instance = new LazyInitialized();
        }
        return instance;
    }
}

Static Block Initialization
Static block initialization is similar to eager initialization, except that an instance of class is created in the static block that provides an option for exception handling.

StaticBlockInitialized.java

package com.mugil.singleton;

public class StaticBlockInitialized {

	private static StaticBlockInitialized instance;

	private StaticBlockInitialized() {
	}

	// Static block initialization for exception handling
	static {
		try {
			instance = new StaticBlockInitialized();
		} catch (Exception e) {
			throw new RuntimeException("Exception occurred in creating singleton instance");
		}
	}

	public static StaticBlockInitialized getInstance() {
		return instance;
	}
}

Using Synchronized Method
The easier way to create a thread-safe singleton class is to make the access method synchronized, so that only one thread can execute this method at a time.

ThreadSafeSing.java

package com.mugil.singleton;

public class ThreadSafeSing {

    private static ThreadSafeSinginstance;
    
    private ThreadSafeSing(){}
    
    public static synchronized ThreadSafeSing getInstance(){
        if(instance == null){
            instance = new ThreadSafeSing();
        }
        return instance;
    }    
}

Using Synchronized Block
The easier way to create a thread-safe singleton class is to make the access method synchronized, so that only one thread can execute this method at a time. Refer the link for the same Link

ThreadSafeSing.java

package com.mugil.singleton;

public class ThreadSafeSing {
    private static ThreadSafeSinginstance;
    
    private ThreadSafeSing(){}
    
    public static ThreadSafeSing getInstance(){
        Synchronized(ThreadSafeSing.class){ 
          if(instance == null){
            instance = new ThreadSafeSing();
          }
        }
        return instance;
    }    
}

Double Checked Locking Singleton
Above Implementation of Singleton provides thread safety buy has a hit over performance. The performance hit happens when two threads try to get the instance of object in getInstance() method but only one is allowed within Synchronized block while the other needs to wait until the first is done checking irrespective of the instance is already created or not.

In the Below method of Implementing Singleton, we again use Synchronized Block but we do the check for the availability of the object instance even before taking lock.

DCCSingleton.java

package com.mugil.singleton;

public class DCCSingleton{

    private static DCCSingletoninstance;
    
    private DCCSingleton(){}
    
   public static DCCSingleton getInstanceUsingDoubleLocking()
   {
    if(instance == null){
        synchronized (DCCSingleton.class) {
            if(instance == null){
                instance = new DCCSingleton();
            }
        }
    }
    return instance;
  }    
}

Refer the Link for how Double Checked Locking works

ENUM Singleton
enum fields are compile time constants, but they are instances of their enum type. And, they’re constructed when the enum type is referenced for the first time.
ENUMSingleton.java
Simple Singleton using enum for DBConnection

public enum EnumSingleton
{
    INSTANCE;

    // instance vars, constructor
    private final Connection connection;

    private Singleton()
    {
        //Initialize the connection
        connection = DB.getConnection();
    }

    public Connection getConnection(){
       return connection;
    }

    // Static getter
    public static Singleton getInstance()
    {
        return INSTANCE;
    }
}

The way it works we can either use getInstance() method or directly call EnumSingleton.INSTANCE to access connection Object.

The Connection can be created using the Below Code

  Connection Conn = Singleton.getInstance().getConnection();

Minimal Implementation using ENUM

public enum MySingleton {
  INSTANCE;   
}

In the above code we may get a doubt how the object is created as we have a empty private constructor which is never invoked?.

The above code gets converted as one below. Above code has an implicit empty constructor. Lets make it explicit instead,

public enum MySingleton {
    INSTANCE;
    private MySingleton() {
        System.out.println("Here");
    }
}

Now when we make a call as below the private constructor is invoked and object gets created

public static void main(String[] args) {
    System.out.println(MySingleton.INSTANCE);
}

Output

Here
INSTANCE

Initialization on demand holder idiom
How it works?

  1. The Below implementation is a lazy loading and thread safe method of creating Singleton
  2. On calling the getInstance() method the lazySingletonClass would be initialized which in turn makes the INSTANCE to be initialized.
  3. Class initialization is inherently thread-safe and if you can have an object initialized on class initialization the object creation too are thread-safe.
  4. Singleton instance variable will never be created and or initialized until getInstance() is invoked. And again since class initialization is thread-safe the instance variable of IntiailizationOnDemandClassholder will be loaded safely, once and is visible to all threads.
public class Singleton {
    private Singleton(){}

    public static class lazySingletonClass{
      private static final Singleton INSTANCE = new Singleton();
    }

    public Singleton getInstance(){
        return lazySingletonClass.INSTANCE;
    }
}
When Object is Created Thread Safe Performance Comments
Eager Initialization Object Gets Created once the Class is Loaded Yes Bad Object is created everytime when the class is accessed
Lazy Initialization Object is Created once required No In lazy initialization you give a public API to get the instance. In multi-threaded environment it poses challenges to avoid unnecessary object creation
Static Block Initialization Object is Created once Static Block is loaded Yes Bad Not a good idea to load resources from static block as it causes performance hit during app startup
Synchronized Method Object is Created once getInstance is called Yes Bad Thread safety is guaranteed.Slow performance because of whole method locking is done
Synchronized Block Object is Created once getInstance is called No Two singleton instances may be created when context switching happens after checking instance is null
Double Checked Locking Object is Created once getInstance is called Yes Good Instance check is done twice
Enum Implementation Object Created using enum is referenced Yes Good
Initialization on demand holder idiom Object Created when static class is initiazlied by calling getInstance method Yes Good Class initialization is inherently thread-safe and if you can have an object initialized on class initialization the object creation too are thread-safe

Note
Dont be confused between Class Loading and Initialization. In the Initialization on demand holder method of singleton you can easily get confused as the static inner class wont be loaded when the outer class loads. The implementation relies on the fact that during initialization phase of execution within the Java Virtual Machine (JVM) as specified by the Java Language Specification (JLS) When the class Singleton is loaded by the JVM, the class goes through initialization. Since the class does not have any static variables to initialize, the initialization completes trivially. The static class definition lazySingletonClasswithin it is not initialized until the JVM determines that lazySingletonClassmust be executed. The static class lazySingletonClassis only executed when the static method getInstance is invoked on the class

The static class lazySingletonClass is only executed when the static method getInstance is invoked on the class Singleton , and the first time this happens the JVM will load and initialize the lazySingletonClass class. The initialization of the lazySingletonClassclass results in static variable INSTANCE being initialized by executing the (private) constructor for the outer class Something. Since the class initialization phase is guaranteed by the JLS to be sequential, i.e., non-concurrent, no further synchronization is required in the static getInstance method during loading and initialization

  1. JDBC-ODBC Bridge Driver
  2. JDBC-Native API
  3. Network Protocol driver(Pure Java Driver)
  4. Thin driver(Pure Java Driver)

What is Difference between Thin client driver and Thick Client driver?
Thick driver – type 1 and type 2 JDBC drivers are called thick drivers.It provides JDBC access via ODBC drivers. ODBC binary code, and in many cases, database client code, must be loaded on each client machine that uses such a driver. and as the program is connected to database by an extra layer, hence thick drivers.

Thin drivers: Drivers converts JDBC calls into the network protocol, used directly by DBMS, allowing a direct call from the client machine to the DBMS server and providing a practical solution for intranet access.

There may be times direct access to JAR files are not allowed due to license restrictions.In such case declaring dependency in POM.xml has no effect. In such case the jar files should be manually downloaded and copied to maven local repository so while defining dependency in POM.xml it would take from mavens local repository

In Terminal

$ mvn install:install-file -Dfile={Path/ojdbc6.jar}
      -DgroupId=com.oracle -DartifactId=ojdbc6 -Dversion=11.2.0 -Dpackaging=jar

In my case I have downloaded the file to Downloads Directory

 mvn install:install-file -Dfile=C:\\Downloads\\ojdbc14.jar
           -DgroupId=com.oracle -DartifactId=ojdbc7 -Dversion=12.1.0 -Dpackaging=jar

On executing the above command it would be copied to maven .m2 local repository

Now the above will add the file to maven local repository.This should be followed by definition in pom.xml for dependency

<dependencies>  

  	<dependency>
            <groupId>com.oracle</groupId>
            <artifactId>ojdbc14</artifactId>
            <version>12.1.0</version>
        </dependency>
   </dependencies>

Array Implementation
CustomArray.java

package com.mugil.alg;

public class CustomArray {
	private int[] arrNum = new int[50];
	private int arrSize = 10;
	
	public static void main(String[] args) {
		CustomArray objCustomArray = new CustomArray();
		System.out.println("---------------");
		System.out.println("Array Initialized");
		objCustomArray.initializeArray();
		objCustomArray.printArray();
		
		System.out.println("---------------");
		System.out.println("Search for No(Index) - " + objCustomArray.getNumIndex(8));
		
		System.out.println("---------------");
		System.out.println("Delete Called");
		objCustomArray.deleteArrayByIndex(5);		
		objCustomArray.printArray();
		
		
		System.out.println("---------------");
		System.out.println("Insert Called");
		objCustomArray.insertArray(20);		
		objCustomArray.printArray();
		
		
	}
	
	public void initializeArray()
	{	
		for (int i = 0; i < arrSize; i++) {
			arrNum[i]  = (int)(Math.random()*10); 
		}
	}
	
	public void printArray()
	{
		
		System.out.print("Array - ");
		for (int i = 0; i < getArraySize(); i++) {
			System.out.print(arrNum[i]);
			System.out.print(" ");
		}		
		System.out.println();
	}
	
	
	//Linear Search
	//Use this if you want to find all the
	//all the places where the element Occurs
	public String getNumIndex(int pNum)
	{
		String NumPOS = "";
		
		for (int i = 0; i < getArraySize(); i++) {
			if(pNum == arrNum[i])
			{
				NumPOS +=  i + " ";
			}
		}
		
		if(NumPOS == "")
		 NumPOS = "None";
		
		return NumPOS;
	}
	
	
	public int getArraySize()
	{
		return arrSize;
	}
	
	public void deleteArrayByIndex(int pPOS)
	{
		
		for (int i = pPOS; i < getArraySize(); i++) {
				arrNum[i] = arrNum[i+1]; 
		}
		
		arrSize--;
	}
	
	public void insertArray(int pNum)
	{
		arrNum[arrSize] = pNum;		
		arrSize++;	
	}
}

Why LinkedList is Faster than ArrayList?
Adding Element in middle of ArrayList requires reshuffling of other elements.Whereas in Linked list only two nodes(Nodes between which the element is added) needs to be changed.

Types of LinkedList?

  1. singly linked list
  2. doubly-linked list
  3. Circular linked list

singly linked list doubly-linked list
Pros:Simple in implementation, requires relatively lesser memory for storage, assuming you need to delete/insert (at) next node – deletion/insertion is faster. Can be iterated in forward as well as reverse direction. In case of needing to delete previous node, there is no need to traverse from head node, as the node to be deleted can be found from ‘.previous’ pointer.
Cons:Cannot be iterated in reverse, need to maintain a handle to the head node of the list else, the list will be lost in memory. If you’re deleting previous node or inserting at previous node, you will need to traverse list from head to previous node to be able to carry out those operations – O(N) time Relatively complex to implement, requires more memory for storage (1 ‘.previous’ pointer per node). Insertions and deletions are relatively more time consuming (assigning/reassigning ‘.previous’ pointer for neighbor nodes)

Time complexity of a linked list

Operation Metrics
Indexing O(n)
Inserting / Deleting at end O(1) or O(n)
Inserting / Deleting in middle O(1) with iterator O(n) with out

The time complexity for the Inserting at the end depends if you have the location of the last node, if you do, it would be O(1) other wise you will have to search through the linked list and the time complexity would jump to O(n).

<dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>

Specifying Version

      <!--Version should be 3.8.1-->
      <version>3.8.1</version>

      <!--Version should less than or up to  3.8-->
      <version>[,3.8]</version>
      
      <!--Version should less than 3.8-->
      <version>[,3.8)</version>

      <!--Version should be between 3.1 to 3.8-->
      <!--If 3.8 is available it picks those-->
      <version>[3.1,3.8]</version>

Specifying Scope


<!--Jar file would be available to JUnit Test Folder-->
<scope>test</scope>

<!--available as Part of Web Server i.e tools.jar-->
<scope>provided</scope>

<!--Jar File available only during runtime-->
<!--Use of Interface at Compile Time and actual class at runtime-->
<scope>runtime</scope>

<!--Use of Interface at Compile Time and actual class at runtime-->
<scope>runtime</scope>

Defines the Maven Plugin with which the compilation has to be carried out

<plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <version>3.6.1</version>
        <configuration>
          <source>1.8</source>
          <target>1.8</target>
        </configuration>
      </plugin>
    </plugins>

Effective POM
Tells the Details of Super POM.xml Lists default configuration.

.
.
<build>
    <sourceDirectory>D:\java\TestMvnProj2\src\main\java</sourceDirectory>
    <testSourceDirectory>D:\java\TestMvnProj2\src\test\java</testSourceDirectory>
    <outputDirectory>D:\java\TestMvnProj2\target\classes</outputDirectory>
</build>
.
.

The above XML code specify the details of sourceDirectory, outputDirectory

You can also see list of plugins called at different phases of maven life cycle.

Parent POM
List of Child Projects are added into modules as separate module.

.
.
<packaging>pom</packaging>

<modules>
<module>Service</module>
<module>Controller</module>
<module>Model</module>
</modules>
.
.

Basic Paradigms

What is POM.xml
A Project Object Model or POM is the fundamental unit of work in Maven. It is an XML file that contains information about the project and configuration details used by Maven to build the project. It contains default values for most projects. Examples for this is the build directory, which is target. Super POM is Mavens default POM. All POMs extend the Super POM unless explicitly set

Maven works in two modes in Command Prompt –
Interactive Mode – Takes command one after another
Batch Mode – takes all command at once

Archetype – Archetype is the one which defines the type of project and project structure. i.e. mvn archetype generate
ArtifactID – Specifies the name of the project.
GroupID – Group Id is one by which similar products or components are tied together under one groupId
i.e.

org.springframework
org.apache
org.commons

If you don’t specify the package name during creation it will take the groupId as package name for classes.

Types of Repo
Remote Repo is of Two type – Internal and External

  1. Central Repo-is mavens own repo accessed over mvn.com
  2. External Repo– are those whose JARs are provided by organizations like IBM for DB2. Those JARs are initially not available in Central Repo.Paid drivers are not available in Central repo rather available in organizations repo
  3. Internal Repo-Internal repos are the one provided by working organization.The main goal of such repos are to provide stable JARs and avoiding downloads of unstable jar directly from Central or external repos and to avoid network traffic

Apart from the above we have one more repo called local repo.
Local Repo – Local repo is the one which we have in the development system under .m2 folder. Local repos would be holding old JARs even when you run clean command which does nothing more than cleaning .class files. Inorder to get rid of old JARs we need to purge

purge local repo

Other Notable Points

  1. Maven is intelligent when you run install it would instatiate before phases(validate,compile and test).When one java file is changed in the list of 100 only 1 file would be compiled rather than 100 files
  2. mvn install – will deploy the JAR fils in the local repo(local .m2 folder) where as mvn deploy(disabled by default) – will deploy the JAR in the remote repo(Internal Repo)
  3. mvn compile – will compile only the java files in the source folder not the java classes in the Test Folder
  4. The Scope of the dependency JARs would be PROVIDED incase you are planning to deploy your code in environment which has someother higher version of JAR than dev environment.The default scope is compile.Though scope is compile the JARS would be available till target container.
  5. If the Team has completed coding for release then the JAR files would be named as RELEASE (or) FINAL.If the Project is still under development than the JAR would be named as SNAPSHOTThis is to make other development team to understand that there would be still code changes accompanied with JAR.
  6. .m2 folder should not be created manually.When you create your first project(maven project) .M2 folder would be created on its own.

An artifact in maven is a resource generated by a maven project. Each maven project can have exactly one artifact like a jar, war, ear, etc.Each maven project has a unique identifier consiting of [groupId, artifactId, version]. When a maven project requires resources of another project a dependency is configured in it’s pom.xml using the above-mentioned identifier. Maven then automatically resolves the dependencies when a build is triggered. The artifacts of the required projects are then loaded either from the local repository, which is a simple directory in your user’s home, or from other (remote) repositories specified in you pom.xml.

Now the once mvn install is done the same snapshots are available in repository location as below

Two Dimensional Arrays (Array of Arrays)

 //Seating Arrangement for 20 Seats
 int arrSeating[][] = new int[4][5];

 //No of Items Produced in Hr By Days in Month
 int arrProdHrByDaysInMonth[][] = new int[30][24];

Two Dimensional Arrays(Array of Arrays of Arrays)

 //No of Items Produced in Hr By Days in Month by Month
 int arrProdHrByDaysInMonth[][][] = new int[12][30][24];

Jagged Arrays
array of arrays such that member arrays can be of different sizes

Looping through ArrayList

         	//Iterate over Collection
		for (Iterator iterator = arrNames.iterator(); iterator.hasNext();) {
			String object = (String) iterator.next();
			System.out.println(object);
		}			
		
		//Iterate over array or Collection
		for (String string : arrNames) {
			System.out.println(string);
		}		
		
		//Iterate over array 
		for (int i = 0; i < arrNames.size(); i++) {
			System.out.println(arrNames.get(i));
		}
		
		//Iterate over array using Temporary Variable
		for (int i = 0; i < arrNames.size(); i++) {
			String string = arrNames.get(i);
			System.out.println(string);
		}

Which one of the Above method is Faster?
All the methods are of same speed since the Traditional for loop uses Iterator inside.The performance difference is noted when there is change in data structure while doing random access like linkedlist is slower than arraylist when you use a traditional for loop since to traverse a 6th element in list it should start from all again

When there is a sorted Array and you should do a search in the sorted array then using BinarySearch is faster than Linear Search

Simple Singleton Using ENUM

MySingleton.java

public enum MySingleton {
  INSTANCE;   
}

Enum Classes has Private Constructor by Default

The Above code can be explicitly written as

MySingleton.java

public enum MySingleton {
    public final static MySingleton INSTANCE = new MySingleton();
    private MySingleton() {
    }
}

When your code first accesses INSTANCE, the class MySingleton will be loaded and initialized by the JVM. This process initializes the static field above once (lazily).

Why cant enum constructors be protected or public in Java?
Enums as a class with a finite number of instances. There can never be any different instances beside the ones you initially declare.Thus, you cannot have a public or protected constructor, because that would allow more instances to be created.