Two Dimensional Arrays (Array of Arrays)

 //Seating Arrangement for 20 Seats
 int arrSeating[][] = new int[4][5];

 //No of Items Produced in Hr By Days in Month
 int arrProdHrByDaysInMonth[][] = new int[30][24];

Two Dimensional Arrays(Array of Arrays of Arrays)

 //No of Items Produced in Hr By Days in Month by Month
 int arrProdHrByDaysInMonth[][][] = new int[12][30][24];

Jagged Arrays
array of arrays such that member arrays can be of different sizes

Looping through ArrayList

         	//Iterate over Collection
		for (Iterator iterator = arrNames.iterator(); iterator.hasNext();) {
			String object = (String) iterator.next();
			System.out.println(object);
		}			
		
		//Iterate over array or Collection
		for (String string : arrNames) {
			System.out.println(string);
		}		
		
		//Iterate over array 
		for (int i = 0; i < arrNames.size(); i++) {
			System.out.println(arrNames.get(i));
		}
		
		//Iterate over array using Temporary Variable
		for (int i = 0; i < arrNames.size(); i++) {
			String string = arrNames.get(i);
			System.out.println(string);
		}

Which one of the Above method is Faster?
All the methods are of same speed since the Traditional for loop uses Iterator inside.The performance difference is noted when there is change in data structure while doing random access like linkedlist is slower than arraylist when you use a traditional for loop since to traverse a 6th element in list it should start from all again

When there is a sorted Array and you should do a search in the sorted array then using BinarySearch is faster than Linear Search

The whole concept of serialization works on versioning. If you save a class object using one version of the class but attempt to deserialize using a newer or different version of the class deserialization might fail.

When you class structure can change in between you serialize the instance and go again to de-serialize it. Changed structure of class will cause JVM to give exception while de-serializing process.This problem can be solved only by adding a unique serial version id to class. It will prevent the compiler to throw the exception by telling that both classes are same, and will load the available instance variables only.

The serialization runtime associates with each serializable class a version number, called a serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization. If the receiver has loaded a class for the object that has a different serialVersionUID than that of the corresponding sender’s class, then deserialization will result in an InvalidClassException. A serializable class can declare its own serialVersionUID explicitly by declaring a field named “serialVersionUID” that must be static, final, and of type long

 static final long serialVersionUID = 69L;

If a serializable class does not explicitly declare a serialVersionUID, then the serialization runtime will calculate a default serialVersionUID value for that class based on various aspects of the class, as described in the Java(TM) Object Serialization Specification

System is a class, that has a public static field out. So it’s more like

class System 
{
    public static PrintStream out;
}

class PrintStream
{
    public void println ...
}

This is a slight oversimplification, as the PrintStream class is actually in the java.io package, but it’s good enough to show the relationship of stuff.

  1. Internally an ArrayList uses an Object[] Array.
           private transient Object[] elementData;
         
  2. As you add items to an ArrayList, the list checks to see if the backing array has room left. If there is room, the new item is just added at the next empty space. If there is not room, a new, larger, array is created, and the old array is copied into the new one.
  3. When we actually create an arrayList following piece of code is executed –
      this.elementData=new Object[initial capacity];
         
  4. ArrayList can be created in two ways-

    List<String> myList=new ArrayList<String>();
     
  5. When we create an ArrayList in this way, default constructor is invoked and will internally create an array of Object with default size, which is 10.

    List<String> myList=new ArrayList<String>(5);
     

    When we create an ArrayList in this way, constructor with an integer argument is invoked and will internally create an array of Object with the size, specified in the constructor argument, which happens to be 5 in this case.

  6. Inside add() method Check is made, before adding element into the array it will check what is the current size of filled elements and what is the maximum size of the array. If size of filled elements is greater than maximum size of the array then size of the array must be increased. But we know that the size of the array cannot be increased dynamically.

    So what happens internally is a new Array is created with size 1.5*currentSize and the data from old Array is copied into this new Array.

Internally an ArrayList uses an Object[].

Capacity vs Size

The capacity is how many elements the list can potentially accommodate without reallocating its internal structures.

The size is the number of elements in the list

If you allocate a new array with arr = new Employee[100], the size of that array (arr.length) is going to be 100. It has 100 elements. All the elements are initially null (as this is an array of object references), but still, there are 100 elements.

If you do something like list = new ArrayList (100), and try to check list.size(), you’ll get 0. There are no elements in the list.

Internally, it’s true that the ArrayList allocates enough place to put 100 items before it needs to extend its capacity, but that’s an internal implementation detail, and the list presents its content to you as “no items stored”. Only if you actually do list.add(something), you’ll have items in the list.

So although the list allocates storage in advance, the API with which it communicates with the program tells you there are no items in it. The null items in its internal array are not available to you – you cannot retrieve them or change them.

An ArrayList is just one way to represent an abstract list, and the capacity of an ArrayList is an implementation detail of how the system implements the logical list.

An ArrayList stores the elements of a list by using an actual array “under the covers.” The actual realization of the array in computer memory has a certain size when it is allocated; this size is the ArrayList’s capacity. The ArrayList emulates a variable-sized list by storing the logical length of the list in addition to the fixed-length array. Thus if you have an ArrayList with a capacity 10 which contains 4 logical elements, the ArrayList can be represented as a length and an array

(4) | e1 | e2 | e3 | e4 | __ | __ | __| __ | __ | __ |

where the (4) is the logical length of the list and ‘__’ represent data that is ignored because it is not part of the logical list. If you attempt to access the 5th element of this ArrayList, it will throw an exception because it knows that the fifth element has not been initialized. If we then append an extra element e5 to the list, the ArrayList becomes

(5) | e1 | e2 | e3 | e4 | e5 | __ | __ | __ | __ | __ |

Note that the capacity has not changed, while the logical length has, because the underlying array is still able to handle all the data in the logical list.

If you manage to add more than ten elements to this list, the ArrayList will not break. The ArrayList is an abstraction meant to be compatible with all array operations. Rather, the ArrayList changes its capacity when its logical length exceeds its original capacity. If we were to add the elements (a1, a2, …, a7) to the above list, the resulting ArrayList might look like

(12) | e1 | e2 | e3 | e4 | e5 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | __ | __ | __ | __ | __ | __ | __ | __ |

with a capacity of 20.

Once you have created an ArrayList, you can ignore the capacity in all programming that follows; the logic is unaffected. However, the performance of the system under certain kinds of operations can be affected. Increasing the capacity, for instance, might well involved allocating a larger array, copying the first array into the second and then performing the operations. This can be quite slow compared to, e.g. the same operation on a linked list. Thus it is sensible to choose the capacity of an ArrayList to be bigger than, or at least comparable to, the actual number of elements expected in the real runtime environment.

Is there a Way to Create ArrayList of Fixed size in Java

 List<String> fixedSizeList = Arrays.asList(new String[100]);

You cannot insert new Strings to the fixedSizeList (it already has 100 elements). You can only set its values like this:

fixedSizeList.set(7, "new value");

What would be the Output of the Following Code

List<Employee> employees = new ArrayList<>(100);
int size = employes.size();

size will be 0 while the initial capacity is 100.

Yes. An interface can extend multiple interfaces, as shown here:

interface Maininterface extends inter1, inter2, inter3{  
  // methods
}

A single class can also implement multiple interfaces

interface A
{
    void test();
}

interface B 
{
    void test();
}

class C implements A, B
{
    @Override
    public void test() {

    }     
}

Single implementation works for both.

Yes.You can use any kind of method in an abstract class

public abstract class AbstractDAO{

public void save(){
  validate();
  //save
}
  private void validate(){ // we are hiding this method
  }
}

Private Constructors
If Private constructor is the only constructor of the class, then the reason is clear: to prevent subclassing. Some classes serve only as holders for static fields/methods and do not want to be either instantiated or subclassed. Note that the abstract modifier is in this case redundant—with or without it there would be no instantiation possible. The abstract modifier is also bad practice because it sends wrong signals to the class’s clients. The class should in fact have been final.

Abstract Class with Private Constructor is same as Final Class. Both serves the same purpose.

POJO Plain Old Java Object. Basically a class with attributes and its getters and setters.

public class User
{
 private String name;
 private int age;

 public void setName(String name){
    this.name = name;
 }

 public String getName(){
    return this.name;
 }

 //same for age

}

POJO vs Java Beans
A JavaBean is a Java object that satisfies certain programming conventions:

  1. all JavaBean properties must have public setter and getter methods (as appropriate);
  2. all JavaBean instance variables should be private.
  3. the JavaBean class must have a no-arg constructor
  4. the JavaBean class must implement either Serializable or Externalizable;

Advantages of Bean

  1. A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.
  2. The properties, events, and methods of a Bean that are exposed to an application
    builder tool can be controlled.
  3. A Bean may be designed to operate correctly in different locales, which makes it
    useful in global markets.
  4. The configuration settings of a Bean can be saved in persistent storage and restored
    at a later time.
  5. A Bean may register to receive events from other objects and can generate events that
    are sent to other objects.

Advantages of POJO

  1. Getter & setter methods allow you to change the underlying data type without breaking the public interface of your class which makes it (and your application) more robust and resilient to changes
  2. You might want to call some other code such as raising a notification when the value is obtained or changed like in java bean. This is not possible with your current class.
  3. You can expose values that are not backed by a field I.E. calculated values such as getFullName() which is a concatenation of getFirstName() and getLastName() which are backed by fields.
  4. You can add validation to your setter methods to ensure that the values being passed are correct. This ensures that your class is always in a valid state.
  5. If the field is an object (I.E. not a primitive type) then the internal state of your class can be modified by other objects which can lead to bugs or security risks. You can protect against this scenario in your POJO’s getter by returning a copy of the object so that clients can work with the data without affecting the state of your object. Note that having a final field does not always protect you against this sort of attack as clients can still make changes to the object being referenced (providing that object is itself mutable) you just cannot point the field at a different reference once it has been set.

Spring vs EJB

App servers written to support the EJB standard can, in theory, be ported from one compliant Java EE app server to another. But that means staying away from any and all vendor-specific extensions that lock you in to one vendor.

Spring ports easily between app servers (e.g., WebLogic, Tomcat, JBOSS, etc.) because it doesn’t depend on them

Spring Boot offers an even better way to write applications without Java EE app servers. You can create an executable JAR and run it on a JVM.

The Spring framework sits on top of the application servers and service libraries. Service integration code (e.g. data access templates) resides in the framework and is exposed to the application developers. In contrast, the EJB 3 framework is integrated into the application server and the service integration code is encapsulated behind an interface. EJB 3 vendors can thus optimize the performance and developer experience by working at the application server level. For example, they can tie the JPA engine closely to JTA transaction management. Another example is clustering support which is transparent to EJB 3 developers

Spring vs J2EE

Strictly speaking, Spring is a framework while Java EE is a specification which is implemented by various softwares such as JBoss and Glassfish.
The greatest difference is that Spring is an actual library while JavaEE is an API that has to be implemented. Depending on the JAVA EE container you could find a full implementation (e.g. Glassfish), a partial implementation (e.g. Tomcat) a full implementation with extra sugar (e.g. JBoss and others).

Is it possible to create Object for abstract class?

abstract class my {
    public void mymethod() {
        System.out.print("Abstract");
    }
}

class poly {
    public static void main(String a[]) {
        my m = new my() {};
        m.mymethod();
        System.out.println(m.getClass().getSuperclass());
    }
}

No, we can’t.The abstract super class is not instantiated by us but by java.

In the above code we are creating object for anonymous class.

my m = new my() {};

When the above code is compiled will result in following class file creation

My.class
Poly$1.class  // Class file corresponding to anonymous subclass
Poly.class

anonymous inner type allows you to create a no-name subclass of the abstract class

When the above code is run the output would be

Output

 Abstract
 class my

Now lets override the method in anonymous inner class like one below.

abstract class my {
    public void mymethod() {
        System.out.print("Abstract");
    }
}

class poly {
    public static void main(String a[]) {
        my m = new my() {
          public void mymethod() {
               System.out.print("Overridden in anonymous class");
           }
        };
        m.mymethod();
        System.out.println(m.getClass().getSuperclass());
    }
}

Output

 Overridden in anonymous class
 class my

Anonymous inner class with same name as abstract class are child classes of abstract class.