Reusing Immutable Object

 
              //Dont Use this
              String strName = new String("Mugil");

              //Use this
              String strName = "Mugil";
         

The Best Example of Immutable Object Reuse is Integer Caching in Java.Lets take the following Example

public class Scratch
{
   public static void main(String[] args)
    {
        Integer a = 1000, b = 1000;  //1
        System.out.println(a == b);

        Integer c = 100, d = 100;  //2
        System.out.println(c == d);
   }
}

Output

false
true

Integer class keeps a cache of Integer instances in the range of -128 to 127, and all autoboxing, literals and uses of Integer.valueOf() will return instances from that cache for the range it covers.

Note that the cache only works if you use auto-boxing or the static method Integer.valueOf(). Calling the constructor will always result in a new instance of integer, even if the value of that instance is in the -128 to 127 range. Integer.valueOf(int). It will return the same Integer object for inputs less than 256.

Reusing Mutable Object

package com.mugil.org.ej;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class Item5 
{
	public static void main(String[] args) throws ParseException 
	{
		Person objPerson = new Person();
		objPerson.initializeDates();
		
		
		SimpleDateFormat sdf = new SimpleDateFormat("dd-M-yyyy");
		String endDate = "31-03-2019";
		Date financialYrEndDate = sdf.parse(endDate);
		
		if(financialYrEndDate.after(objPerson.getFinancialYrStartDate()))
		{
			System.out.println("Valid End Date");
		}
	}
}


class Person
{
	private Date financialYrStartDate;	
	
	public void initializeDates() throws ParseException
	{
		SimpleDateFormat sdf = new SimpleDateFormat("dd-M-yyyy");
		String dateInString = "01-04-2018";
		financialYrStartDate = sdf.parse(dateInString);
	}

	public Date getFinancialYrStartDate() {
		return financialYrStartDate;
	}

	public void setFinancialYrStartDate(Date financialYrStartDate) {
		this.financialYrStartDate = financialYrStartDate;
	}	
}

In the above example I know for Sure that the Financial Year End Date should be after Start Date and the Start Date is going to be same for Every Year

package com.mugil.org.ej;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class Item5 
{
	public static void main(String[] args) throws ParseException 
	{			
		SimpleDateFormat sdf = new SimpleDateFormat("dd-M-yyyy");
		String endDate = "31-03-2019";
		Date financialYrEndDate = sdf.parse(endDate);
		
		if(financialYrEndDate.after(Person.financialYrStartDate ))
		{
			System.out.println("Valid End Date");
		}
	}
}


class Person
{
	static Date financialYrStartDate;
	
	static
	{	
		SimpleDateFormat sdf = new SimpleDateFormat("dd-M-yyyy");
		String dateInString = "01-04-2018";		
		try {
			financialYrStartDate = sdf.parse(dateInString);
		} catch (ParseException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}		
}

Since financialYrStartDate is going to be same it is made as Class Variable which helps to prevent unnecessary Object Creation.

Use Primitives instead of Wrapper Class

public static void main(String[] args) {
    Long sum = 0L; // uses Long, not long
    for (long i = 0; i <= Integer.MAX_VALUE; i++) {
        sum += i;
    }
    System.out.println(sum);
}

It takes 43 seconds to run as Long and long primitive brings it down to 6.8 seconds.

Noninstantiable classes are those which can be invoked using object creation.We prefer classes to be Noninstantiable if you want the class to be Utility class with static methods and variables in it.

public final class Useless {
    private Useless() {}
}

A private constructor is the normal object-oriented solution. However, it would still be possible to instantiate such a class using reflection, like this:

Constructor<Useless> con = Useless.class.getDeclaredConstructor();
con.setAccessible(true); // bypass "private"
Useless object = con.newInstance();

To prevent even reflection from working, throw an exception from the constructor:

public final class Useless {
    private Useless() {
        throw new UnsupportedOperationException();
    }
}

Dont Use absract class for NonInstantiable classes

Attempting to enforce noninstantiability by making a class abstract does not work. The class can be subclassed and the subclass instantiated. Furthermore, it misleads the user into thinking the class was designed for inheritance

While Implementing Singleton the following things should be answered

  1. Reflection
  2. Serialization
  3. Cloning

Objects for Singleton Classes implemented using private Constructor can be invoked by Reflection as below

Item3.java

package com.mugil.org.ej;

import java.lang.reflect.Constructor;

public class Item3 {
	public static void main(String[] args) 
	{
		// reflection concept to get constructor of a Singleton class.  
		Constructor<Singleton> constructor;
		
		try {			
			constructor = Singleton.class.getDeclaredConstructor();
			
			// change the accessibility of constructor for outside a class object creation.
			constructor.setAccessible(true);
			
			// creates object of a class as constructor is accessible now.
			Singleton secondOb = constructor.newInstance();
			System.out.println(secondOb.getName());
			
			// close the accessibility of a constructor.
			constructor.setAccessible(false);
		} catch (Exception e){
			// TODO Auto-generated catch block
			e.printStackTrace();
		}		
	}
}


class Singleton {

    private static Singleton instance = new Singleton();

    /* private constructor */
    private Singleton() {}

    public static Singleton getDefaultInstance() {
        return instance;
    }
    
    public String getName()
    {
    	return "MyName";
    }
}

Output

MyName

Singleton and Serialization
Without readResolve() Method

// Java code to explain effect of 
// Serilization on singleton classes
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInput;
import java.io.ObjectInputStream;
import java.io.ObjectOutput;
import java.io.ObjectOutputStream;
import java.io.Serializable;
 
class Singleton implements Serializable 
{
    // public instance initialized when loading the class
    public static Singleton instance = new Singleton();
     
    private Singleton() 
    {
        // private constructor
    }
}
 
 
public class GFG 
{
 
    public static void main(String[] args) 
    {
        try
        {
            Singleton instance1 = Singleton.instance;
            ObjectOutput out
                = new ObjectOutputStream(new FileOutputStream("file.text"));
            out.writeObject(instance1);
            out.close();
     
            // deserailize from file to object
            ObjectInput in 
                = new ObjectInputStream(new FileInputStream("file.text"));
             
            Singleton instance2 = (Singleton) in.readObject();
            in.close();
     
            System.out.println("instance1 hashCode:- "
                                                 + instance1.hashCode());
            System.out.println("instance2 hashCode:- "
                                                 + instance2.hashCode());
        } 
         
        catch (Exception e) 
        {
            e.printStackTrace();
        }
    }
}

Output

instance1 hashCode:- 1550089733
instance2 hashCode:- 785945

With readResolve() Method

// Java code to remove the effect of 
// Serialization on singleton classes
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInput;
import java.io.ObjectInputStream;
import java.io.ObjectOutput;
import java.io.ObjectOutputStream;
import java.io.Serializable;
 
class Singleton implements Serializable 
{
    // public instance initialized when loading the class
    public static Singleton instance = new Singleton();
     
    private Singleton() 
    {
        // private constructor
    }
     
    // implement readResolve method
    protected Object readResolve()
    {
        return instance;
    }
}
 
public class GFG 
{
 
    public static void main(String[] args) 
    {
        try
        {
            Singleton instance1 = Singleton.instance;
            ObjectOutput out 
                = new ObjectOutputStream(new FileOutputStream("file.text"));
            out.writeObject(instance1);
            out.close();
         
            // deserailize from file to object
            ObjectInput in 
                = new ObjectInputStream(new FileInputStream("file.text"));
            Singleton instance2 = (Singleton) in.readObject();
            in.close();
         
            System.out.println("instance1 hashCode:- "
                                           + instance1.hashCode());
            System.out.println("instance2 hashCode:- "
                                           + instance2.hashCode());
        } 
         
        catch (Exception e)
        {
            e.printStackTrace();
        }
    }
}

Output

instance1 hashCode:- 1550089733
instance2 hashCode:- 1550089733

Refer http://codethataint.com/blog/singleton-and-serialization/

// JAVA code to explain cloning 
// issue with singleton
class SuperClass implements Cloneable
{
  int i = 10;
 
  @Override
  protected Object clone() throws CloneNotSupportedException 
  {
    return super.clone();
  }
}
 
// Singleton class
class Singleton extends SuperClass
{
  // public instance initialized when loading the class
  public static Singleton instance = new Singleton();
 
  private Singleton() 
  {
    // private constructor
  }
}
 
public class GFG
{
  public static void main(String[] args) throws CloneNotSupportedException 
  {
    Singleton instance1 = Singleton.instance;
    Singleton instance2 = (Singleton) instance1.clone();
    System.out.println("instance1 hashCode:- "
                           + instance1.hashCode());
    System.out.println("instance2 hashCode:- "
                           + instance2.hashCode()); 
  }
}

Output

Output :- 
instance1 hashCode:- 366712642
instance2 hashCode:- 1829164700

Two different hashCode means there are 2 different objects of singleton class.

To overcome this issue, override clone() method and throw an exception from clone method that is CloneNotSupportedException. Now whenever user will try to create clone of singleton object, it will throw exception and hence our class remains singleton.

// JAVA code to explain overcome 
// cloning issue with singleton
class SuperClass implements Cloneable
{
  int i = 10;
 
  @Override
  protected Object clone() throws CloneNotSupportedException 
  {
    return super.clone();
  }
}
 
// Singleton class
class Singleton extends SuperClass
{
  // public instance initialized when loading the class
  public static Singleton instance = new Singleton();
 
  private Singleton() 
  {
    // private constructor
  }
 
  @Override
  protected Object clone() throws CloneNotSupportedException 
  {
    throw new CloneNotSupportedException();
  }
}
 
public class GFG
{
  public static void main(String[] args) throws CloneNotSupportedException 
  {
    Singleton instance1 = Singleton.instance;
    Singleton instance2 = (Singleton) instance1.clone();
    System.out.println("instance1 hashCode:- "
                         + instance1.hashCode());
    System.out.println("instance2 hashCode:- "
                         + instance2.hashCode()); 
  }
}

Output

Output:-
Exception in thread "main" java.lang.CloneNotSupportedException
	at GFG.Singleton.clone(GFG.java:29)
	at GFG.GFG.main(GFG.java:38)

If you don;t want to throw exception you can also return the same instance from clone method.

// JAVA code to explain overcome 
// cloning issue with singleton
class SuperClass implements Cloneable
{
  int i = 10;
 
  @Override
  protected Object clone() throws CloneNotSupportedException 
  {
    return super.clone();
  }
}
 
// Singleton class
class Singleton extends SuperClass
{
  // public instance initialized when loading the class
  public static Singleton instance = new Singleton();
 
  private Singleton() 
  {
    // private constructor
  }
 
  @Override
  protected Object clone() throws CloneNotSupportedException 
  {
    return instance;
  }
}
 
public class GFG
{
  public static void main(String[] args) throws CloneNotSupportedException 
  {
    Singleton instance1 = Singleton.instance;
    Singleton instance2 = (Singleton) instance1.clone();
    System.out.println("instance1 hashCode:- "
                           + instance1.hashCode());
    System.out.println("instance2 hashCode:- "
                           + instance2.hashCode()); 
  }
}

Output

Output:-
instance1 hashCode:- 366712642
instance2 hashCode:- 366712642

The Best way to implement Singleton is by using ENUM which takes care of Serialization and Other Issues on its own.

What is Telescoping Constructor Pattern?
In Java, there is no support for default values for constructor parameters. As a workaround, a technique called “Telescoping constructor” is often used. A class has multiple constructors, where each constructor calls a more specific constructor in the hierarchy, which has more parameters than itself, providing default values for the extra parameters.

We’ve all at some point encountered a class with a list of constructors where each addition adds a new option parameter

Pizza(int size) { ... }        
Pizza(int size, boolean cheese) { ... }    
Pizza(int size, boolean cheese, boolean pepperoni) { ... }    
Pizza(int size, boolean cheese, boolean pepperoni, boolean bacon) { ... }

Disadvantage
This is called the Telescoping Constructor Pattern. The problem with this pattern is that once constructors are 4 or 5 parameters long it becomes difficult to remember the required order of the parameters as well as what particular constructor you might want in a given situation.

One alternative you have to the Telescoping Constructor Pattern is the JavaBean Pattern where you call a constructor with the mandatory parameters and then call any optional setters after:

Pizza pizza = new Pizza(12);
pizza.setCheese(true);
pizza.setPepperoni(true);
pizza.setBacon(true);

The problem here is that because the object is created over several calls it may be in an inconsistent state partway through its construction. This also requires a lot of extra effort to ensure thread safety.

The better alternative is to use the Builder Pattern.

public class Pizza {
  private int size;
  private boolean cheese;
  private boolean pepperoni;
  private boolean bacon;

  public static class Builder {
    //required
    private final int size;

    //optional
    private boolean cheese = false;
    private boolean pepperoni = false;
    private boolean bacon = false;

    public Builder(int size) {
      this.size = size;
    }

    public Builder cheese(boolean value) {
      cheese = value;
      return this;
    }

    public Builder pepperoni(boolean value) {
      pepperoni = value;
      return this;
    }

    public Builder bacon(boolean value) {
      bacon = value;
      return this;
    }

    public Pizza build() {
      return new Pizza(this);
    }
  }

  private Pizza(Builder builder) {
    size = builder.size;
    cheese = builder.cheese;
    pepperoni = builder.pepperoni;
    bacon = builder.bacon;
  }
}

Note that Pizza is immutable and that parameter values are all in a single location. Because the Builder’s setter methods return the Builder object they are able to be chained.

Pizza pizza = new Pizza.Builder(12)
                       .cheese(true)
                       .pepperoni(true)
                       .bacon(true)
                       .build();

This results in code that is easy to write and very easy to read and understand. In this example, the build method could be modified to check parameters after they have been copied from the builder to the Pizza object and throw an IllegalStateException if an invalid parameter value has been supplied. This pattern is flexible and it is easy to add more parameters to it in the future. It is really only useful if you are going to have more than 4 or 5 parameters for a constructor. That said, it might be worthwhile in the first place if you suspect you may be adding more parameters in the future.

Factory Patterns vs Builder Pattern
Consider a restaurant. The creation of “today’s meal” is a factory pattern, because you tell the kitchen “get me today’s meal” and the kitchen (factory) decides what object to generate, based on hidden criteria.

The builder appears if you order a custom pizza. In this case, the waiter tells the chef (builder) “I need a pizza; add cheese, onions and bacon to it!” Thus, the builder exposes the attributes the generated object should have, but hides how to set them.