Supplier Accounts.java

@FunctionalInterface
public interface Accounts{
  abstract String showAccountType(); 
}

AccountImpl.java

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = () -> "Hi there";
  System.out.println(squareRoot.showAccountType());
 }
}
public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = new Accounts() {
   @Override
   public String showAccountType() {
    return "Hi there";
   }
  };
  System.out.println(squareRoot.showAccountType());
 }
}
Consumer Accounts.java

@FunctionalInterface
public interface Accounts {
 abstract void showAccountType(String strAccType);
}

AccountImpl.java

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = (strAccType) -> System.out.println(strAccType);
  squareRoot.showAccountType("Savings");
 }
}

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = new Accounts() {
   @Override
   public void showAccountType(String strAccType) {
    System.out.println(strAccType);
   }
  };
 }
}
Predicate Accounts.java

@FunctionalInterface
public interface Accounts{
  abstract boolean showAccountType(String accountType);
}

AccountImpl.java

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = (accountType) -> {
   if ("Savings" == accountType)
    return true;
   else
    return false;
  };

  if (squareRoot.showAccountType("Savings"))
   System.out.println("Savings");
  else
   System.out.println("Invalid Account");
 }
}
public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = new Accounts() {
   @Override
   public boolean showAccountType(String accountType) {
    if ("Savings" == accountType)
     return true;
    else
     return false;
   }
  };

  if (squareRoot.showAccountType("Savings"))
   System.out.println("Savings");
  else
   System.out.println("Invalid Account");   
 }
}
Function Accounts.java

@FunctionalInterface
public interface Accounts  
{
 abstract String showAccountType(String accountType, String returnAccType);
}

AccountImpl.java

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = (accountType, returnType) -> {
   if (accountType == "Savings")
    return "Credit";
   else
    return "Debit";
  };

  System.out.println(squareRoot.showAccountType("Savings", null));
 }
}
public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = new Accounts() {
   @Override
   public String showAccountType(String accountType, String returnAccType) {

    if (accountType == "Savings")
     return "Credit";
    else
     return "Debit";
   }
  };

  System.out.println(squareRoot.showAccountType("Savings", null));
 }
}
Urnary Operator Accounts.java

@FunctionalInterface
public interface Accounts{
 abstract String showAccountType(String accountType);
}

AccountImpl.java

public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = (accountType) -> {
   return "AccountType is " + accountType;
  };
  squareRoot.showAccountType("Savings");
 }
}
public class AccountImpl {
 public static void main(String[] args) {
  Accounts squareRoot = new Accounts() {
   @Override
   public String showAccountType(String accountType) {
    return "AccountType is " + accountType;
   }
  };

  System.out.println(squareRoot.showAccountType("Savings"));
 }
}
  1. Optional is a wrapper class which makes a field optional which means it may or may not have values.
  2. ptional as a single-value container that either contains a value or doesn’t (it is then said to be “empty”)
  3. The advantage compared to null references is that the Optional class forces you to think about the case when the value is not present. As a consequence, you can prevent unintended null pointer exceptions.
  4. The intention of the Optional class is not to replace every single null reference. Instead, its purpose is to help design more-comprehensible APIs so that by just reading the signature of a method, you can tell whether you can expect an optional value. This forces you to actively unwrap an Optional to deal with the absence of a value.

Lets take the below code

String version = computer.getSoundcard().getUSB().getVersion();

In the above piece of java code if any of the 3 values other the Version is NULL will throw a null pointer exception. To prevent this lets add a null check

String version = "UNKNOWN";
if(computer != null){
  Soundcard soundcard = computer.getSoundcard();
  if(soundcard != null){
    USB usb = soundcard.getUSB();
    if(usb != null){
      version = usb.getVersion();
    }
  }
}

Now the above code has become Clumsy with less readability and lot of boilerplate code has been added.
In languages like Groovy these conditions could be handles like one below

String version = computer?.getSoundcard()?.getUSB()?.getVersion();
(or)
String version = 
    computer?.getSoundcard()?.getUSB()?.getVersion() ?: "UNKNOWN";

Now lets replace the above code with new Optional in Java 8

public class Computer {
  private Optional<Soundcard> soundcard;  
  public Optional<Soundcard> getSoundcard() { ... }
  ...
}

public class Soundcard {
  private Optional<USB> usb;
  public Optional<USB> getUSB() { ... }

}

public class USB{
  public String getVersion(){ ... }
}

The advantage compared to null references is that the Optional class forces you to think about the case when the value is not present. As a consequence, you can prevent unintended null pointer exceptions.

What is the Point of Optional when the same could be done using NULL Check?
If you are doing NULL check the traditional way there would be no much difference. However, the difference is felt when you are carrying out chaining operations in streams and the datatypes returned are optional.The difference may not be significant in this case but as the chain of objects increases e.g. person.getAddress.getCity().getStreet().getBlock(),

Methods in Optional
get()
If a value is present in this Optional, returns the value, otherwise throws NoSuchElementException

void ifPresent(Consumer consumer)
If a value is present, it invokes the specified consumer with the value, otherwise does nothing.

boolean isPresent()
Returns true if there is a value present, otherwise false.

static Optional ofNullable(T value)
Returns an Optional describing the specified value, if non-null, otherwise returns an empty Optional.

T orElse(T other)
Returns the value if present, otherwise returns other.

T orElseGet(Supplier other)
Returns the value if present, otherwise invokes other and returns the result of that invocation.

orElseThrow(Supplier exceptionSupplier)
Returns the contained value, if present, otherwise throws an exception to be created by the provided supplier.

Lets take a simple example where Optional returns Empty or Value based on some Condition

package com.example.demo;
import java.util.Optional;
public class Test {

 public static void main(String[] args) {
  //IfPresent
  Optional < String > strOpt = getName(" Piggy");
  System.out.print("First Call -");
  strOpt.ifPresent(System.out::println);


  Optional < String > strOpt2 = getName("");
  System.out.print("Second Call -");
  strOpt2.ifPresent(System.out::println);

  System.out.println();

  //IsPresent and get
  Optional < String > strOpt3 = getNewName(" Biggy");
  System.out.print("Third Call -");

  if (strOpt3.isPresent())
   System.out.println(strOpt3.get());


  //orElse
  Optional < String > strOpt4 = getNewName(null);
  System.out.print("Fourth Call -");
  System.out.println(strOpt4.orElse(" Hippi"));


 }

 public static Optional < String > getName(String strName) {
  if (strName.length() > 0)
   return Optional.of(strName);
  else
   return Optional.empty();
 }

 public static Optional < String > getNewName(String strName) {
  //Optional strNewName = (strName!=null)?Optional.of(strName):Optional.empty();
  return Optional.ofNullable(strName);
 }
}

Output

First Call - Piggy
Second Call -
Third Call - Biggy
Fourth Call - Hippi